F-Geometry and Amari’s α-Geometry on a Statistical Manifold
نویسندگان
چکیده
منابع مشابه
An Information Geometry of Statistical Manifold Learning
Manifold learning seeks low-dimensional representations of high-dimensional data. The main tactics have been exploring the geometry in an input data space and an output embedding space. We develop a manifold learning theory in a hypothesis space consisting of models. A model means a specific instance of a collection of points, e.g., the input data collectively or the output embedding collective...
متن کاملManifold Alignment Preserving Global Geometry
This paper proposes a novel algorithm for manifold alignment preserving global geometry. This approach constructs mapping functions that project data instances from different input domains to a new lower-dimensional space, simultaneously matching the instances in correspondence and preserving global distances between instances within the original domains. In contrast to previous approaches, whi...
متن کاملInteractive Learning Using Manifold Geometry
We present an interactive learning method that enables a user to iteratively refine a regression model. The user examines the output of the model, visualized as the vertical axis of a 2D scatterplot, and provides corrections by repositioning individual data instances to the correct output level. Each repositioned data instance acts as a control point for altering the learned model, using the ge...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Entropy
سال: 2014
ISSN: 1099-4300
DOI: 10.3390/e16052472